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Voxel-based morphometry from conventional T1-weighted images has proved effective to quantify Alzheimer's
disease (AD) related brain atrophy and to enable fairly accurate automated classification of AD patients,mild cog-
nitive impaired patients (MCI) and elderly controls. Little is known, however, about the classification power of
volume-basedmorphometry, where features of interest consist of a few brain structure volumes (e.g. hippocam-
pi, lobes, ventricles) as opposed to hundreds of thousands of voxel-wise graymatter concentrations. In thiswork,
we experimentally evaluate two distinct volume-basedmorphometry algorithms (FreeSurfer and an in-house al-
gorithm called MorphoBox) for automatic disease classification on a standardized data set from the Alzheimer's
Disease Neuroimaging Initiative. Results indicate that both algorithms achieve classification accuracy comparable
to the conventional whole-brain voxel-based morphometry pipeline using SPM for AD vs elderly controls and
MCI vs controls, and higher accuracy for classification of AD vsMCI and early vs late AD converters, thereby dem-
onstrating the potential of volume-based morphometry to assist diagnosis of mild cognitive impairment and
Alzheimer's disease.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Automated image-based brainmorphometry analysis is increasingly
used to quantify structural changes during normal aging and progres-
sion of certain diseases. This trend relates to both the widespread avail-
ability of brain imaging equipment in clinical routine and research, and
the concurrent development of neuroinformatics which has material-
ized in several free aswell as commercial image analysis software pack-
ages released over the past 15 years: SPM, FSL, FreeSurfer, BrainVisa,
Mindboggle, NeuroQuant, and NeuroQLab, to mention a few.
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Brain morphometry methods ultimately aim to extract imaging bio-
marker information that characterizes structural patterns of changes
across groups of subjects, e.g. healthy and diseased. Methods vary in
the type of imaging biomarkers they use. In voxel-based morphometry
(VBM) fromhigh resolution T1-weighted brainmagnetic resonance im-
aging (MRI) data, imaging biomarkers are derived from processed im-
ages such as gray matter concentration maps, that are registered to a
reference space in order to enable voxel-by-voxel comparisons across
subjects (Ashburner and Friston, 2000). Several thousand voxel bio-
markers need to be evaluated if the analysis is performed throughout
the whole brain, as is common practice. Voxel-based brain morphome-
try has proven a valuable exploratory tool to characterize structural
changes in various diseases aswell as in several aspects of normal devel-
opment (Mietchen and Gaser, 2009).

This paper focuses on the diagnosis of mild cognitive impairment
(MCI) and Alzheimer's disease (AD). Several groups have shown that
VBM combined with high-dimensional classification techniques can ac-
curately distinguish AD patients, MCI patients and elderly controls (Liu
et al., 2004; Klöppel et al., 2008; Duchesne et al., 2008; Cuingnet et al.,
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2011; Liu et al., 2012). Automatic voxel-based classification of AD pa-
tients vs frontotemporal demented patients has also been shown feasi-
ble (Klöppel et al., 2008; Davatzikos et al., 2008).

As a natural alternative and complementary approach to voxel-
based morphometry, however, imaging biomarker information may
also be obtained from volumes of specific brain structures of interest
(Huppertz et al., 2010; Giorgio and De Stefano, 2013). There is now
widespread agreement that medial temporal atrophy, in particular hip-
pocampal atrophy, is a sensitive AD biomarker (Frisoni et al., 2009,
2010; Jack et al., 2011). Note that other biomarkers than voxels and vol-
umes include cortical thickness measurements (Fischl and Dale, 2000;
Jones et al., 2000), cortical folding patterns (Mangin et al., 2004), and
longitudinal metrics of volume changes (Freeborough and Fox, 1997),
not to mention potential disease biomarkers available from other mo-
dalities than T1-weighted imaging.

It is not yet clear how accurate fully automated volume-based mor-
phometry (VolBM) can be at predicting disease compared to VBM.
Cuingnet et al. (2011) reported hippocampus volume estimation
methods that are competitive with whole-brain VBM to detect AD at
an early stage. Other studies showed that volumes of medial temporal
lobe regions computed using NeuroQuant exhibit statistically signifi-
cant differences between early AD patients and controls (Brewer et al.,
2008) and correlate with clinical scores (Kovacevic et al., 2009).

It is sometimes argued that whole-brain voxel-level information is
ideal for classification in that it captures the whole pattern of disease-
induced anatomical changes. In practice, however, high-dimensional
classifiers suffer from the so-called curse of dimensionality, which in-
herently limits their accuracy unless trained from unrealistically large
datasets. Moreover, high-dimensional classifiers tend to appear as
“black boxes” to clinicians as opposed to rather simple volumetric mea-
sures of brain tissue or structure that are well known to be affected by
age or disease. The interpretation of voxel-based classifiers in terms of
spatial patterns of changes is an open methodological issue (Gaonkar
and Davatzikos, 2012).

We here provide an experimental evaluation of VolBM for automated
AD and MCI classification, with comparison to the whole-brain VBM ap-
proach using SPM previously reported, e.g., in Klöppel et al. (2008) and
Cuingnet et al. (2011). The remainder of this paper is structured as fol-
lows. Sections 2–4 describe the data, brain morphometry algorithms
and multivariate classification algorithms used in our evaluation. Experi-
mental results are reported in Section 5 and discussed in Section 6.
2. Analysis dataset

2.1. ADNI background

Data used in the disease classification experiments described in the
following were obtained from the Alzheimer's Disease Neuroimaging
Initiative (ADNI) database (adni.loni.ucla.edu). The ADNI was launched
in 2003 by the National Institute on Aging (NIA), the National Institute
of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug
Administration (FDA), private pharmaceutical companies and non-
profit organizations, as a $60million, 5-year public–private partnership.
The primary goal of ADNI has been to test whether serial magnetic res-
onance imaging (MRI), positron emission tomography (PET), other bio-
logical markers, and clinical and neuropsychological assessment can be
Table 1
Comparison of the segmentation algorithms underlying the morphometry methods eval-
uated in this work.

Segmentation model Atlas prior Labeling

SPM Tissue-wise Yes Soft
FreeSurfer Structure-wise Yes Hard
MorphoBox Tissue-wisea No Soft

a MorphoBox segments brain structures in a post-processing step, see text.
combined to measure the progression of mild cognitive impairment
(MCI) and early Alzheimer's disease (AD). Determination of sensitive
and specific markers of very early AD progression is intended to aid re-
searchers and clinicians to develop new treatments and monitor their
effectiveness, as well as lessen the time and cost of clinical trials. The
Principal Investigator of this initiative is Michael W. Weiner, MD, VA
Medical Center and University of California — San Francisco. ADNI is
the result of the efforts of many co-investigators from a broad range of
academic institutions and private corporations, and subjects have
been recruited from over 50 sites across the U.S. and Canada. The initial
goal of ADNI was to recruit 800 subjects but ADNI has been followed by
ADNI-GO and ADNI-2. To date these three protocols have recruited over
1500 adults, ages 55 to 90, to participate in the research, consisting of
cognitively normal older individuals, people with early or late MCI,
and people with early AD. The follow-up duration of each group is spec-
ified in the protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects origi-
nally recruited for ADNI-1 and ADNI-GO had the option to be followed
in ADNI-2. For up-to-date information, see www.adni-info.org.

2.2. ADNI standardized analysis set

Our analysis dataset was obtained from the ADNI standardized anal-
ysis sets described in Wyman et al. (2012), which consist of both
1.5 Tesla (1.5 T) and 3 Tesla (3 T) good quality T1-weightedMR images,
from different acquisition systems and vendors, of individuals diag-
nosed as either normal, MCI, or AD based on careful clinical assessment.
AD diagnosis is estimated to have an accuracy rate of about 90% using
consensus criteria for probable AD (definite AD requires autopsy confir-
mation), and diagnostic accuracy is lower at pre-symptomatic stages. A
fraction of subjects may therefore be misdiagnosed, for instance some
pre-clinical AD subjects may be diagnosed normal or MCI, and some
other subjects may be diagnosed ADwhile suffering from other demen-
tias. It should therefore be kept in mind that the classification accuracy
measures reported in Section 5 are inherently lowered by diagnosis un-
certainty, assuming that automatic classification errors and diagnosis
errors are weakly correlated, which is reasonable given that ADNI diag-
nosis was not based on morphometry.

We used the screening scans from the 1.5 T dataset (818 image sets
corresponding to distinct subjects: 229 controls, 401 MCI, 188 AD) and
the baseline scans from the 3 T dataset (151 image sets corresponding
to distinct subjects: 47 healthy, 71 MCI, 33 AD). All subjects from the
3 T dataset are also included in the 1.5 T dataset, having been scanned
at 3 T less than 4 months after their 1.5 T scan. The analysis dataset
was constituted by taking the standardized ADNI 1.5 T dataset and re-
placing every 1.5 T scan by the corresponding subject 3 T scan when
available, resulting in a set of images with mixed field strengths
(about 80% 1.5 T and 20% 3 T) from all distinct subjects with the same
size and diagnosis repartition as the 1.5 T dataset.

For a fair comparison between morphometry methods, the images
input to the different morphometry methods were the images corrected
for gradient distortion, B1 inhomogeneity and bias field as provided by
ADNI. Hence image artifacts are expected to have a minimal effect on
morphometry results. Note that each of the tested methods (FreeSurfer,
MorphoBox, SPM, see Section 3) performed a further bias field correction.

We also conducted experiments on the pure 1.5 T dataset that
yielded very similar results to those obtained from the combined
1.5 T/3 T dataset, and are thus not reported. The 3 T dataset alone ap-
peared too small to serve as a basis for meaningful statistical compari-
sons between morphometry methods.

3. Brain morphometry methods

3.1. SPM

SPM (Statistical ParametricMapping,www.fil.ion.ucl.ac.uk/spm) is a
popular neuroimaging analysis software that implements a VBM

http://www.adni-info.org
http://www.fil.ion.ucl.ac.uk/spm


Fig. 1. Linear regression plots for total GM volume estimation on the standardized ADNI dataset using FreeSurfer (left) and MorphoBox (right). Black and red dots represent healthy con-
trols and AD patients, respectively. Dotted lines represent the 10 and 90 percentiles for the controls.
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pipeline thoroughly described at the theoretical level in Ashburner and
Friston (2000, 2005), Ashburner (2007), and Ashburner and Friston
(2009) and at the practical level in Ashburner (2010). In this work, we
used SPM version 8, abbreviated SPM8. In brief, the pipeline first con-
verts an incomingMR scan into several tissue probability maps, includ-
ing a GM probability map, using a Bayesian image segmentation
algorithm called New Segment. The GMprobabilitymap is then spatially
smoothed and warped to a reference space to enable voxel-by-voxel
comparisons of different subjects. This normalization step involves
rescaling the smoothed GM probability values, considered as voxel-
wise GM concentrations, by the Jacobian determinants of the deforma-
tions in order to compensate for spurious volume variations introduced
by the warping. In addition, the reference space itself is iteratively opti-
mized from the GM and WM probability maps of different subjects
using the DARTEL algorithm (Ashburner, 2007).

3.2. FreeSurfer

FreeSurfer (surfer.nmr.mgh.harvard.edu) is today probably themost
widely used software for VolBM. It implements a complex image pro-
cessing pipeline described in Fischl et al. (2002), Fischl (2012) and the
references therein, which segments an incoming scan in a large number
of anatomical structures and subsequently computes corresponding
volumes. In this work, we used FreeSurfer version 5.1.0 andweremain-
ly interested in temporal GM, total GM, hippocampus and ventricular
volumes output by FreeSurfer as potential imaging biomarkers of AD-
related brain atrophy.
Fig. 2. Linear regression plots for temporal GM volume estimation using FreeSurfer (left) and M
tively. Dotted lines represent the 10 and 90 percentiles for the controls.
A current limitation of FreeSurfer is its computational complexity
compared to SPM, which may restrict its use in clinical routine. On an
up-to-date single-processor PC, the FreeSurfer pipeline typically takes
several hours to run for a single scan while SPM takes minutes. Other
highly accurate volume extractionmethods such asmulti-template seg-
mentationmethods (Klein et al., 2005) also require heavy computation-
al load.

3.3. MorphoBox

We implemented a brain volumetry algorithm that combines simple
and fast image analysis methods in order to perform VolBM in compu-
tation time comparable with SPM without hardware optimization.
This algorithm calledMorphoBox is freely available as aweb application
(http://brain-morpho.epfl.ch) and is detailed in Appendix A.

One key algorithmic differencewith FreeSurfer that enables reduced
computation time is that MorphoBox splits the segmentation of ana-
tomical structures into two sequential steps: 1) labeling of total intra-
cranial volume (TIV) voxels in brain tissue (CSF, GM, CSF) similarly to
SPM's New Segment except that no atlas-based prior is used at this
stage; and 2) brain structure segmentation by combining tissue maps
obtained in step 1 with anatomical masks derived from a single-
subject template via nonrigid registration. In FreeSurfer, both steps are
collapsed into one step that directly infers structure-wise labels using
a local image intensity model (Fischl et al., 2002). Also note that, con-
trary to FreeSurfer, both MorphoBox and SPM perform soft tissue label-
ing, i.e., assign voxels to tissueweights as opposed to single tissue labels,
orphoBox (right). Black and red dots represent healthy controls and AD patients, respec-

http://brain-morpho.epfl.ch


Fig. 3. Linear regression plots for hippocampus volume detection on the standardized ADNI dataset using FreeSurfer (left) and MorphoBox (right). Black and red dots represent healthy
controls and AD patients, respectively. Dotted lines represent the 10 and 90 percentiles for the controls.
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hence accounting for partial volume effects to some extent. Table 1
summarizes the main differences between the segmentation methods
underlying SPM, FreeSurfer and MorphoBox, respectively.

4. Multivariate disease classification

Automatic classification techniques based on multiple biomarkers
can help the clinician to test a specific binary hypothesis regarding a
particular subject, e.g., is the subject MCI or AD? If the subject is MCI,
will he/she or not convert to AD within a certain time? Consistently
with previous work on classification in AD, we used support vector ma-
chines (SVMs) (Cortes and Vapnik, 1995) as implemented in LIBSVM
(Chang and Lin, 2011) to respectively perform automatic classification
of AD patients vs healthy controls, MCI patients vs healthy controls,
AD vsMCI patients, and early vs late AD converters amongMCI patients.
The previous study of Abdulkadir et al. (2011) indicates that disease
classifiers can safely be trained on ADNI images acquiredwith heteroge-
neous hardware settings. In each classification scenario, we compared
classification performances from three distinct feature sets: normalized
voxelwise GM concentrations computed via SPM and a set of a priori
chosen volumes extracted using either FreeSurfer or MorphoBox.

4.1. Voxel-based classification

For the sake of comparison of VolBM methods with conventional
VBM, we implemented an SPM8-based classification method similar
to the one described in Klöppel et al. (2008) using a linear hard-
margin SVM classifier. The GM tissue probability maps in native space
were obtained from SPM8 New Segment (Ashburner and Friston,
2005) and subsequently normalized to the population template
Fig. 4. ROC curves corresponding to Figs. 1–3 for AD detection on the standardized ADNI datase
estimated by FreeSurfer and MorphoBox, respectively.
generated from all images in the standardizedADNI dataset using the it-
erative DARTEL approach (Ashburner, 2007), a procedure that took
about three days on a standard PC. GM probability values in template
space were modulated by the Jacobian determinant of the deformation
field in order to compensate for local volume changes induced by spatial
normalization (Ashburner and Friston, 2000). Voxels were then exclud-
ed if their modulated GM probability was less than 0.2 or if short of sig-
nificance (p N 0.05) according to a two-sample t-test (Chaves et al.,
2009). The remaining voxels, of the order of 300,000 in our experi-
ments, were detrended for age as recommended by (Dukart et al.,
2011) and fed into the SVM classifier.
4.2. Volume-based disease classification

The rationale for selecting brain structures for volume-based classi-
fication was their known involvement in AD-related brain atrophy at
an early or moderately advanced stage of the disease (Frisoni et al.,
2010).We chose a set of 10 features consisting of the following normal-
ized brain or ventricular volumes: total GM, left and right temporal GM,
left and right hippocampus, total CSF, and lateral, 3 and 4 ventricles. All
MorphoBox and FreeSurfer volumeswere normalized by FreeSurfer's or
MorphoBox's TIV, respectively, and used to train multivariate SVM clas-
sifiers. For consistencywith Cuingnet et al. (2011), and in order to inves-
tigate the benefit of multivariate classification, we also evaluated
univariate classifiers based on the hippocampus volume only for both
FreeSurfer and MorphoBox.

In the case of FreeSurfer, the TIV (called intracranial volume in the
FreeSurfer 5.1.0 documentation), total GM, and hippocampus and ven-
tricular volumes were read directly from the asegstats output file. As
suggested on the FreeSurfer wiki (surfer.nmr.mgh.harvard.edu/fswiki/
t using, from left to right: total GM, temporal GM, and hippocampus normalized volumes



Table 2
Single-biomarker abnormality detection rates for FreeSurfer and MorphoBox.

Biomarker AD MCI

FreeSurfer MorphoBox FreeSurfer MorphoBox

Left hippocampus 82% 77% 70% 66%
Right hippocampus 79% 76% 70% 67%
Hippocampus 83% 78% 71% 69%
Left temporal GM 77% 80% 65% 67%
Right temporal GM 75% 79% 64% 65%
Temporal GM 78% 81% 66% 67%
Cortical GM 70% 73% 63% 64%
Total GM 71% 72% 64% 64%
Total CSF 64% 72% 56% 63%
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CorticalParcellation), left and right temporal GMvolumeswere comput-
ed by summing up several ROI volumes found in the lh.aparc.stats and
rh.aparc.stats files, respectively. These are the ROIs labeled as superior
temporal, middle temporal, inferior temporal, transverse temporal,
banks of the superior temporal sulcus, fusiform, entorhinal, temporal
pole and parahippocampal according to the Desikan–Killiany atlas
(Desikan et al., 2006). Likewise, the total CSF was computed by sum-
ming up all ventricular volumes and adding the remaining CSF volume
corresponding to voxels classified as extraventricular CSF. In order to
correct relative volumes for aging effects, we applied the same linear
detrending method as for VBM (Dukart et al., 2011) to each volume.

A specificity of volume-based classification is that the number of vol-
ume features is typically much smaller than the number of training
scans, implying that the classification problem is not linearly separable.
Therefore, the linear hard-margin SVM is not applicable and we instead
resorted to linear soft-margin SVM classifiers using an adjustable cost
parameter C.

4.3. Evaluation of classification performance

The discriminative power of the different SVM classifiers was es-
timated by leave-one-out cross-validation, a classical procedure that
excludes one subject, trains the classifier with the remaining sub-
jects and then checks whether the left-out subject is well classified
or not. Numbers of true positives (TP), false positives (FP), true neg-
atives (TN) and false negatives (FN) were counted by repeating this
scheme for every subject. AD patients were considered to be posi-
tives in the classification of AD patients vs healthy controls as well
as in the classification of AD patients vs MCI patients. MCI patients
were considered positives in the classification of MCI patients vs
healthy controls. Likewise, AD converters were considered positives
in the classification of AD converters vs non-converters among MCI
subjects.

The following performance measures are reported in Section 5:

• Sensitivity (SEN), the proportion of correctly classified positives:
SEN = TP ∕ (TP + FN).

• Specificity (SPE), the proportion of correctly classified negatives:
SPE = TN ∕ (TN + FP).
Table 3
Binary multivariate classification results for AD vs normal.

Method Performance

SEN SPEC BACC PPV NPV

FreeSurfer 82% 88% 85% 84% 86%
MorphoBox 86% 91% 89% 88% 89%
SPM 82% 94% 88% 92% 86%
• Balanced accuracy (BACC), the average of sensitivity and specificity:
BACC = (SEN + SPE) ∕ 2.

• Positive predictive value (PPV), the proportion of true positives in de-
tected positives: PPV = TP ∕ (TP + FP).

• Negative predictive value (NPV), similar to PPV for negatives: NPV=
TN ∕ (TN + FN).

• Likelihood ratio positive, LR+ = SEN ∕ (1− SPE), the post-test posi-
tive odds corresponding to even pre-test odds given a positive test.

• Likelihood ratio negative, LR− = (1− SEN) ∕ SPE, the post-test posi-
tive odds corresponding to even pre-test odds given a negative test.

Also, following Cuingnet et al. (2011), McNemar's chi square test
using the Yates correction was applied to assess differences in accuracy
between classifiers as well as to test whether each classifier was equiv-
alent to a random classifier.

5. Results

5.1. Processing

All images were processed by SPM8, FreeSurfer 5.1.0 and
MorphoBox. Both SPM and MorphoBox SPM terminated successfully
in all cases while FreeSurfer failed to process 12 images for reasons
that we did not further investigate. These cases, which are specified by
their unique ADNI identifier in Appendix C, relate specifically to 2/229
controls, 2/401 MCI patients, 1/188 AD patient in the 1.5 T dataset,
and 1/47 control, 4/71 MCI patients, 2/33 AD patient in the 3 T dataset.
The FreeSurfer performance measures reported below are restricted to
the standardized ADNI dataset excluding those cases. For the McNemar
tests in multivariate classification, the images that could not be proc-
essed by FreeSurfer were counted as random classifications. The aver-
age computation time per image on a single-threaded 3 GHz
processor with 8 GB RAM was about 8 min for MorphoBox, 10 h for
FreeSurfer, and 5 min 30 s for SPM.

5.2. FreeSurfer/MorphoBox biomarker comparison

This section presents an experimental comparison between the two
above described VolBM methods, FreeSurfer and MorphoBox. Direct
evaluation of segmentation accuracy is impossible without knowledge
of a ground truth. However, given two cohorts, one of normal subjects
and one of patients (in this case, reliably diagnosedMCI or AD subjects),
we may assess the ability of the respective methods to detect diseased
subjects using a particular brain structure volume.

To that end, we defined for each structure of interest an age-
matched normative range for volumes normalized by the TIV accord-
ing to the method under consideration. This was done using linear
regression against age on the healthy cohort, as depicted in
Figs. 1–3. More specifically, normative ranges were defined as the
linear regression prediction intervals corresponding to a given per-
centile under the simplifying assumption that normalized volumes
are normally distributed at each age with constant variance. Note
that normative ranges obtained under more realistic regression
models, e.g. log-normal or nonlinear (Walhovd et al., 2011), turned
McNemar tests

LR+ LR− FreeSurfer MorphoBox SPM

6.83 0.20 – p b 0.0001 p = 0.0736
9.56 0.15 p b 0.0001 – p = 1.0

13.67 0.19 p = 0.0736 p = 1.0 –



Table 4
Binary multivariate classification results for MCI vs normal.

Method Performance McNemar tests

SEN SPEC BACC PPV NPV LR+ LR− FreeSurfer MorphoBox SPM

FreeSurfer 66% 80% 73% 85% 57% 3.30 0.42 – p b 0.0001 p b 0.0001
MorphoBox 69% 83% 76% 88% 61% 4.06 0.37 p b 0.0001 – p b 0.0001
SPM 78% 68% 73% 81% 63% 2.44 0.32 p b 0.0001 p b 0.0001 –
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out to have little impact on this analysis.We used one-sided intervals
of the form (c,+∞) to detect atrophied structures and (−∞,c) to de-
tect hypertrophied structures. The higher the percentile, the wider
the range.

Receiver operating characteristic (ROC) curves shown in Fig. 4
express the proportion of diseased subjects found outside the nor-
mative range (sensitivity) as a function of the proportion of normal
subjects outside the normative range (1–specificity) for several vol-
umetric biomarkers. Abnormality detection rates, defined for a bio-
marker as the value on the corresponding ROC curve where
sensitivity equals specificity, were evaluated in both the AD and
MCI cohorts for several imaging biomarkers relevant to Alzheimer's
disease (Frisoni et al., 2010) and compared between FreeSurfer and
MorphoBox, see Table 2. For consistency, FreeSurfer and MorphoBox
volumes were normalized by their respective own total intra-cranial
volume (TIV) estimates.

Overall, abnormality detection rates obtained using MorphoBox and
FreeSurfer turned out remarkably consistent on standardized ADNI data
despite the different degrees of sophistication and computation time of
the respective methods. FreeSurfer achieved higher accuracy than
MorphoBoxwith its hippocampus volumemeasures but yielded slightly
lower accuracy with GM measures. Both methods could detect about
80% AD patients and close to 70% MCI patients with equal specificity
(true negative rate)with temporal lobe and hippocampus volumemea-
sures. Abnormality detection rates obtained with more global bio-
markers were lower: about 70% AD patients and 65% MCI patients for
cortical GM and total GM, and similarly for total CSF using MorphoBox
(lower abnormality detection rates were found with total CSF using
FreeSurfer, most likely because the FreeSurfer measure excludes most
of the extraventricular CSF and may thus lack power in detecting CSF
expansion).

Differences in abnormality detection rates reflect algorithmic dif-
ferences between MorphoBox and FreeSurfer that unavoidably lead
to different volume estimates. The soft labeling approach used in
MorphoBox (see Appendix A) might better account for partial vol-
uming at the GM/CSF and GM/WM interfaces, leading to possibly
more discriminative global GM volume measures. On the other
hand, the FreeSurfer hippocampus segmentation method, which
uses local, as opposed to global, intensity distribution modeling
(Fischl et al., 2002) could be better suited for the segmentation of
small mixed gray/white structures such as the hippocampus. These
findings are consistent with the observation from the plots in
Table 5
Binary multivariate classification results for AD vs MCI.

Method Performance

SEN SPEC BACC PPV NPV

FreeSurfer 69% 64% 67% 47% 81%
MorphoBox 69% 67% 68% 49% 82%
SPM 45% 69% 57% 40% 73%
Figs. 1–3 that FreeSurfer hippocampus volumes appear strongly cor-
related with age than their MorphoBox counterparts, while the con-
verse can be seen for total and temporal GM volumes.
5.3. Multivariate classification results

Tables 3–7 report classification results from SVMs independently
trained with volumetric features from MorphoBox and FreeSurfer
and whole-brain voxel-wise GM concentrations from SPM. As
discussed in Subsection 4.1, volume-based and voxel-based feature
sets have very different dimensions, respectively 10 for MorphoBox
and FreeSurfer, and about 300,000 for SPM. As discussed in
Section 4, a hard-margin SVM was used for SPM-based classifiers
whereas soft-margin SVMs were used for both MorphoBox and
FreeSurfer due to lack of linear separability. The reported VolBM
classification results correspond to the SVM margin cost parameters
that yielded the largest BACC among predefined values on an expo-
nential grid C = 10−3,…,103.

All evaluated morphometry methods tended towards higher classi-
fication performance, as measured for instance by the balanced accura-
cy (BACC), for AD vs normal classification (BACC ≥ 85%), than MCI vs
normal (BACC ≅ 75%), AD vs MCI (BACC ≤ 70%) and early vs late AD
conversion (BACC≤ 70%), reflecting the increasing inherent difficulties
of the respective classification problems. Nevertheless, all classifiers
performed significantly above chance in all cases with the McNemar
tests significant at p = 0.0001.
5.4. AD vs normal

In theADvs normal classification, theMorphoBox-based andwhole-
brain SPM-based classifiers both reached almost 90% BACC, which is of
the order of the AD diagnosis accuracy, and no classifier was found sig-
nificantly more accurate than the other according to the McNemar test.
As shown by the likelihood ratios LR+ and LR−, the SPM-based classifier
turned out better at confirming AD suspicion, but poorer at confirming
normality. FreeSurfer achieved a slightly smaller BACC of 85%, which is
perhaps surprising but consistent with our previous experimental ob-
servation that some MorphoBox volumetric biomarkers achieved
individually higher abnormality detection rate for AD subjects (see
Subsection 5.2).
McNemar tests

LR+ LR− FreeSurfer MorphoBox SPM

1.92 0.48 – p = 0.2482 p b 0.0001
2.09 0.46 p = 0.2482 – p b 0.0001
1.45 0.80 p b 0.0001 p b 0.0001 –



Table 6
Binary multivariate classification results for AD converters vs non-converters within 3 years.

Method Performance McNemar tests

SEN SPEC BACC PPV NPV LR+ LR− FreeSurfer MorphoBox SPM

FreeSurfer 75% 66% 71% 75% 66% 2.21 0.38 – p = 0.0133 p b 0.0001
MorphoBox 64% 71% 68% 75% 60% 2.21 0.51 p = 0.0133 – p = 0.0003
SPM 66% 54% 60% 66% 54% 1.43 0.63 p b 0.0001 p = 0.0003 –
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5.5. MCI vs normal

As expected, allmethods proved less accurate for the classification of
MCI vs normal than for AD vs normal, with BACC in the range 73–76%.
Again, differences between classifiers were small, although statistically
significant. The MorphoBox-based classifier turned out the most accu-
rate to confirm MCI suspicion (LR+ = 4.06), but the SPM-based classi-
fier was the most accurate to confirm normality (LR− = 0.32). The
FreeSurfer-based classifier achieved a larger LR+ than SPM.

5.6. AD vs MCI

Differences between volume-based and voxel-based classifierswere
found to be more significant for AD vs MCI than for AD vs normal and
MCI vs normal. The drop in classification accuracy compared to AD vs
normal and MCI vs normal was remarkably more pronounced for the
SPM-based classifier, resulting in a relatively poor 57% BACC compared
to 67–68% for FreeSurfer and MorphoBox, respectively. This suggests
that distributions of voxel-wise GM concentrationsmight be too similar
in AD and MCI populations for an optimal classification to be achieved
using the implemented feature selection strategy (see Subsection 4.2),
which ignores prior spatial information about AD atrophy.

5.7. Early vs late AD conversion

Among the MCI subjects present in the analysis dataset, we know
from subsequent visits that some were later diagnosed AD in the course
of the ADNI study. Specifically, 36 out of 401 MCI subjects are known to
have converted to AD within one year while 157 did not; 111 converted
within 2 years and 130 did not; 137 converted within 3 years and 103
did not. We may thus try to automatically classify AD converters vs
non-converters depending on a given conversion time window using
the same techniques as described above. In the following, we report clas-
sification experiments for time windows of 2 years and 3 years, given
that a one-year timewindowdoes not provide a sufficient number of con-
verters for statistically meaningful comparisons.

The results, reported in Tables 6 and 7, show classification accuracy
levels quite similar to the AD vs MCI classification. Again, volume-
based classification performed more accurately than whole-brain
voxel-based classification. For a 2-year conversion threshold, FreeSurfer
and MorphoBox provided similar results with 68% and 69% BACC, re-
spectively, and similar likelihood ratios. For a 3-year conversion thresh-
old, however, FreeSurfer turned out somewhat more accurate than
MorphoBox, as shown by 71% BACC against 68% with the same LR+

2.21 but lower LR− 0.38 against 0.51. The hippocampus volume might
be the driving feature for classification when comparing two groups
both affected by early-stage AD atrophy. Therefore, this outcome is in
linewith our previous observation (see Subsection 5.2) that FreeSurfer's
Table 7
Binary multivariate classification results for AD converters vs non-converters within 2 years.

Method Performance

SEN SPEC BACC PPV NPV

FreeSurfer 71% 65% 68% 63% 72%
MorphoBox 67% 71% 69% 66% 71%
SPM 57% 65% 61% 59% 63%
hippocampus estimate tends to be more sensitive to disease than
MorphoBox's.
5.8. Comparison with univariate classification

In order to assess the actual benefit of multivariate classification in
VolBM approaches, we report in the Appendix (see Tables B.8–B.12)
classification results obtained using FreeSurfer-based and MorphoBox-
based SVM classifiers trained with the hippocampus volume only
(univariate classification), as opposed to the above described 10 volume
features (multivariate classification). As expected, univariate classifiers
achieved smaller BACC values thanmultivariate classifiers in all classifi-
cation scenarios, yet by smaller amounts for FreeSurfer (1–3%) than for
MorphoBox (6–9%). FreeSurfer-based univariate classifiers actually per-
formed very similarly tomultivariate classifiers for early vs late AD con-
verters, hence confirming the hippocampus preponderance in such
classification tasks. The fact that univariate classification was clearly
less accurate than multivariate classification for MorphoBox suggests
that the relatively poorer hippocampus segmentation quality compared
to FreeSurfer was compensated for by temporal lobe GM aswell as pos-
sibly other GM and CSF measures.
6. Discussion

The goal of this study was to investigate the potential of VolBM to
detect AD-related brain atrophy compared with conventional whole-
brain VBM as implemented using SPM. We used both FreeSurfer and a
simpler/faster in-house method called MorphoBox to benchmark
VolBMmethods against automatic binary disease classification, follow-
ing a number of previous VBM studies in AD (Liu et al., 2004; Klöppel
et al., 2008; Duchesne et al., 2008; Cuingnet et al., 2011; Liu et al.,
2012). We trained SVM classifiers from a set of ten a priori chosen vol-
umetric biomarkers known to be affected by AD at an early stage
(Frisoni et al., 2010): left and right hippocampi, left and right temporal
GM, lateral, 3 and 4 ventricles, total GM, and total CSF. SVMs trained re-
spectively from FreeSurfer and MorphoBox were compared with SVMs
trained from SPM-based GM concentration maps. Classification accura-
cy was evaluated on a standardized ADNI dataset comprising 818 1.5 T
and 3 T scans from different subjects (229 controls, 401 MCI, 188 AD)
using leave-one-out cross-validation.

VolBM yielded classification performance comparable, or superior, to
whole-brain VBM in all tested classification scenarios. Specifically,
VolBM using MorphoBox proved roughly equivalent to VBM for both
ADvsnormal andMCI vs normal classifications, and clearlymore accurate
for both AD vsMCI and early vs late AD converter classifications. A similar
trend was observed for VolBM using FreeSurfer, although it turned out
slightly less accurate than the SPM-based classification for AD vs normal.
McNemar tests

LR+ LR− FreeSurfer MorphoBox SPM

2.03 0.45 – p = 0.04123 p = 0.0005
2.31 0.47 p = 0.04123 – p b 0.0001
1.63 0.66 p = 0.0005 p b 0.0001 –
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FreeSurfer and MorphoBox yielded remarkably consistent results
across classification experiments. The FreeSurfer-based classifier was
found to be marginally less accurate than the MorphoBox-based one
for AD vs normal, MCI vs normal and AD vsMCI, but slightly more accu-
rate to classify converters vs non-converters within 3 years. Also, uni-
variate SVMs trained with FreeSurfer hippocampus volumes only
performed similarly to their multivariate versions, confirming the im-
portance of hippocampal atrophy in early AD as well as the diagnostic
value of highly accurate hippocampus segmentation methods.

Moderate differences in classification accuracy between FreeSurfer
and MorphoBox reflect algorithmic differences that lead to different
brain volume estimates in practice. Differences were evaluated using a
single-biomarker abnormality detection approach, and did not give a
clear cut advantage to either one or the other method. Global biomarkers
such as total GM, temporal GM and total CSF volumes output by
MorphoBox tended to be more sensitive to disease than their FreeSurfer
counterparts,while therewere strong indications that FreeSurfer's hippo-
campus volumeestimatesweremore sensitive thanMorphoBox's. Conse-
quently, it is not surprising that FreeSurfer achieved relatively more
accurate classification as morphometric differences between the groups
under comparison were mainly localized in the hippocampal region as
opposed to being widespread throughout the brain.

Ourfindings are in linewith the observation of Cuingnet et al. (2011)
that univariate SVMs using the hippocampus volume only are compara-
ble to VBM for classification of controls vs MCI patients believed to con-
vert to ADwithin 18 months. We here tested the possibility to enhance
the discriminative power of volume-based classifiers through a multi-
variate feature set including other biomarkers than the hippocampus
volume. Our results indicate that higher-scale biomarkers such as tem-
poral GM, total GM or total CSF volumes play a beneficial role in disease
classification, but the advantage of including such featureswas less clear
for FreeSurfer than for MorphoBox.

We evaluated the whole-brain SPM-based morphometry classifica-
tion approach reported to perform best by Cuingnet et al. (2011) in
the AD vs normal classification among over twenty method variants,
and the experimentally observed accuracy levels are consistent with
previous studies that used the same implementation (Klöppel et al.,
2008; Cuingnet et al., 2011). We speculate that the relatively poor per-
formance of SPM-based classifiers in both AD vs MCI and early vs late
AD converter classifications may be due to suboptimal voxel selection.
Feature selection schemes that make use of prior spatial information
about AD atrophy, e.g. by focusing on temporal regions, might prove
more effective in such classification tasks involving localized statistical
differences between the populations to be compared. The extent to
which the SPM-based classification may be improved is however an
area of open research and was out of the scope of this work.

7. Conclusion

Our results provide evidence that VolBM is a valuable alternative to
whole-brain VBM to assist the diagnosis of Alzheimer's disease andmild
cognitive impairment. Within the tested conditions, multivariate
volume-based classification approaches overall performed better than
SPM. Moreover, a conceptual advantage of VolBM for image-guided di-
agnosis is the ability to squeeze anatomical information into a few de-
scriptors, thereby not only providing easily interpretable second-
opinion information to the clinician, but also working around the diffi-
cult problem of high-dimensional feature selection for automated clas-
sification. In the future, it will be interesting to evaluate whether our
findings extend to other neurological disorders than AD and MCI.

It was also shown that a simple and fast VolBMmethod, MorphoBox,
yielded classification performance quite similar to themore sophisticated
FreeSurfer method, suggesting that high segmentation accuracy may
have limited impact on automated disease prediction and presumably
low impact on final diagnosis. On the other hand, the availability of fast
VolBM software that can be easily integrated into clinical workflows
opens theway to amore extensive use of automated brainmorphometry
in clinical practice.
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Appendix A. MorphoBox algorithm description

Appendix A.1. Manual template construction

A T1-weighted MR scan of a 64 year-old female with no alcohol
dependence and no known central nervous system disorder was
subjectively chosen as a template image to help automated image
segmentation. The scan was acquired on a 3 Tesla scanner 32-head
channel coil (Magnetom Trio a Tim system, Siemens Healthcare, Er-
langen, Germany) at Lausanne University Hospital, Switzerland,
using the ADNI-2 MPRAGE protocol with a 2-fold acceleration (Jack
et al., 2010), yielding 256 × 240 × 160 voxels with slightly anisotrop-
ic size 1 × 1 × 1.2mm3. Various anatomical structures were drawn by
a neurologist on the template image and corrected by two neuroradi-
ologists on consent. These include: the total intracranial volume
(TIV) defined by the hemispheric and cerebellar gray matter (GM),
white matter (WM) and the intracranial cerebrospinal fluid (CSF);
lateral, third and fourth ventricles; cerebellum; thalamus; putamen;
pallidum; caudate nucleus; and hippocampus. Every bilateral struc-
ture was split into two distinct masks. The cortex was also
parcellated in ten regions corresponding to the frontal, temporal, pa-
rietal, and occipital lobes and the cerebellum in both hemispheres.

Appendix A.2. Image processing pipeline

The volume extraction algorithm is sketched in Fig. A.5. It takes as
input an MPRAGE volume previously corrected for B1 receive

http://www.fnih.org
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(Narayana et al., 1988) and gradient distortion (Schmitt, 1985). A related
important aspect that we do not discuss here is the quality control
and artifact correction. Whereas ADNI takes care of this aspect for
the standardized dataset, we employ in our clinical settings auto-
mated image quality assessment (Mortamet et al., 2009), artifact
corrections and checkup for acquisition parameter compliance on
the scanner console.

Appendix A.2.1. Template-to-subject registration

The template image is non-rigidly registered onto the input MR
image via a spatial transformation from the input image space to the
template image space under the form:

T xð Þ ¼ A∘D xð Þ;

where A is a 9-parameter affine transformation (translation and
rotation followed by anisotropic scaling) and D is a free-form
diffeomorphic displacement field. Registration proceeds by first
estimating A by maximizing normalized mutual information
(Studholme et al., 1998) using a gradient ascent algorithm, and
resampling the template image accordingly. The displacement field
D is then estimated using a fast iterative scheme that maximizes
the local correlation between the input image and the affine-
transformed template image by successive compositions of smooth
incremental displacements (Chefd'hotel et al., 2002).

Appendix A.2.2. Bias field correction

Following registration, the input image is corrected for bias field
using an expectation–maximization (EM) algorithm similar to
Ashburner and Friston (2005). This uses a simple 4-class Gaussian mix-
ture intensity model representing GM, WM, CSF and non-brain tissue,
and is constrained by template-based tissue prior probability maps
Fig. A.5. Sketch of the Morpho

Fig. A.6. Example segmentation using MorphoBox: coronal view of an input MPRAGE volume
structures (lateral ventricles, central nuclei, hippocampus).
resampled to the input image space from the transformation T estimat-
ed in the registration step. Such priors were computed using the
DARTEL tool of SPM8 (Ashburner and Friston, 2009) from a dataset
of 136 MR scans of healthy subjects (41 ± 25 years) acquired at
Lausanne University Hospital, Switzerland, in the same conditions
as the template image. The correction field (inverse bias field) is
modeled as a 3-degree spatial polynomial. To speed up computa-
tion, the M-step objective is approximated using a second-order
Taylor expansion, resulting in efficient linear updates for the cor-
rection field coefficients.

Appendix A.2.3. Skull stripping

Next, the TIV template mask is resampled to the input image space
according to the composed transformation T, which provides a reason-
ably accurate skull stripping where errors (due to included meninges
and cut brain tissues) usually represent up to 1% of the TIV as assessed
by visual inspection.

Appendix A.2.4. Brain tissue classification

The TIV restricted image is then submitted to a completely template-
free tissue classification algorithm in order to avoid bias in tissue label-
ing towards the particular cohort involved in a probabilistic template
construction (Ribes et al., 2011). At this stage, the image appearance
model is a 5-class Gaussianmixture, which better accounts for intensity
variations within CSF and GM (e.g., due to partial voluming) than a sim-
ple 3-classmodel, as discussed for instance by Bach Cuadra et al. (2005).
The classes roughly represent ventricular CSF, sulcal CSF, cortical GM,
deep GMandWM. Tissue classification ismade robust to noise by incor-
porating a stationary Markov–Potts prior model (Van Leemput et al.,
1999; Bach Cuadra et al., 2005)with a 6-neighborhood system. Practical
model fitting is carried out using a variational expectation–maximiza-
tion (VEM) algorithm, which is numerically more stable than other
schemes commonly used in brain image analysis (Roche et al., 2011).

The VEM algorithm requires accurate initial guesses of themean tis-
sue intensities to work robustly. An initializationmethod that we found
Box processing pipeline.

and two distinct overlays of maximum probability tissue labels (CSF, GM, WM) and brain



Table B.12
Binary univariate classification results for early vs late AD converter within 2 years.

Method Performance McNemar tests

SEN SPEC BACC PPV NPV LR+ LR− MorphoBox FreeSurfer

FreeSurfer 67% 66% 67% 63% 70% 1.97 0.50 – p b 0.0001
MorphoBox 67% 61% 63% 59% 68% 1.72 0.54 p b 0.0001 –

16 D. Schmitter et al. / NeuroImage: Clinical 7 (2015) 7–17
effective is to detect the three zero-crossings of the smoothed histogram
first derivative, and consider them as the initial mean intensities corre-
sponding respectively to ventricular CSF, cortical GM and WM. The ad-
ditional two classes (mainly representing sulcal CSF and deep GM but
also voxel intensities affected by partial voluming) are initialized by av-
eraging adjacent values. We tested other initialization methods that
make use of the 3-class mixture model fit performed in the bias field
correction step, which however proved less effective for disease predic-
tion. The VEM algorithm outputs five posterior probability maps, which
are converted into threemaps corresponding to CSF/GM/WMby simply
adding the ventricular and sulcal CSF maps, on the one hand, and the
cortical and deep GM maps, on the other hand.

Appendix A.2.5. Volumetry

Finally, the tissue probability maps are combined with the masks
resampled from the template via transformation T computed in the
template-to-subject registration step to produce regional volume esti-
mates. Lobe-wise GM volumes are computed by summing up GMprob-
abilities over the template-based parcels. The same approach is used
with CSF probabilities to compute ventricular volumes. Hippocampus,
central nuclei and cerebellum volumes are computed by summing up
GM and WM probabilities over the relevant masks.

Appendix B. Classifiers using hippocampus volume only
Table B.8
Binary univariate classification results for AD vs normal.

Method Performance McNemar tests

SEN SPEC BACC PPV NPV LR+ LR− MorphoBox FreeSurfer

FreeSurfer 84% 81% 82% 78% 86% 4.42 0.20 – p = 0.248213
MorphoBox 74% 85% 80% 80% 80% 4.93 0.31 p = 0.248213 –

Table B.9
Binary univariate classification results for MCI vs normal.

Method Performance McNemar tests

SEN SPEC BACC PPV NPV LR+ LR− MorphoBox FreeSurfer

FreeSurfer 68% 76% 71% 83% 57% 2.83 0.42 – p = 0.000177
MorphoBox 62% 76% 67% 82% 53% 2.58 0.50 p = 0.000177 –
Table B.10
Binary univariate classification results for AD vs MCI.

Method Performance

SEN SPEC BACC PPV NP

FreeSurfer 72% 60% 64% 46% 82
MorphoBox 59% 62% 61% 42% 76

Table B.11
Binary univariate classification results for early vs late AD converter within 3 years.

Method Performance

SEN SPEC BACC PPV N

FreeSurfer 74% 63% 70% 73% 6
MorphoBox 61% 63% 62% 69% 5
Appendix C. Images not processed by FreeSurfer

Table C.13
ADNI identifiers of images for which FreeSurfer terminated before completion.
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